Heterogeneous architecture-based systems-on-chip enable the development of flexible and powerful multifunctional RF systems. In complex and dynamic environments where applications arrive continuously and stochastically, real-time scheduling of multiple applications to appropriate processor resources is crucial for fully utilizing the heterogeneous SoC’s resource potential. However, heterogeneous resource-scheduling algorithms still face many problems in practical situations, including generalized abstraction of applications and heterogeneous resources, resource allocation, efficient scheduling of multiple applications in complex mission scenarios, and how to ensure the effectiveness combining with real-world applications of scheduling algorithms. Therefore, in this paper, we design the Multi-Application Scheduling Algorithm, named MASA, which is a two-phase scheduler architecture based on Deep Reinforcement Learning. The algorithm is made up of neural network scheduler-based task prioritization for dynamic encoding of applications and heuristic scheduler-based task mapping for solving the processor resource allocation problem. In order to achieve stable and fast training of the network scheduler based on the actor–critic strategy, we propose optimization methods for the training of MASA: reward dynamic alignment (RDA), earlier termination of the initial episodes, and asynchronous multi-agent training. The performance of the MASA is tested with classic directed acyclic graph and six real-world application datasets, respectively. Experimental results show that MASA outperforms other neural scheduling algorithms and heuristics, and ablation experiments illustrate how these training optimizations improve the network’s capacity.
Read full abstract