The modulation of perovskite oxide thin films’ properties, through both intrinsic and extrinsic methods, has been extensively studied to enhance their photocatalytic performance. We employed ab initio density functional theory calculations to investigate the layer-dependent structural and electronic properties of orthorhombic NaTaO3 thin films. Our findings reveal that slabs comprising five, four, and three layers retain the non-magnetic and semiconducting characteristics of the bulk material, with their properties progressively converging towards those of an infinite-surface slab as the number of layers increases. Biaxial in-plane strain induces a linear change in the structure of surface TaO4 tetrahedra, thereby altering the film’s band gap. Notably, the two-layer slab exhibits a transitional behavior between the bulk-like nature of thicker films and the unique features of a NaTaO3 monolayer, showing heightened sensitivity to strain. Under compression, this bilayered system acquires bulk-like properties, whereas its strain-free state is magnetic and metallic akin to the monolayer. Similar transitions are observed in the latter, though under higher compression values. We provide an in-depth discussion of the structural and electronic mechanisms underlying these transitions. Additionally, the relative band-edge alignment with water-splitting photocatalytic potentials underscores the complex interplay between strain and dimensionality. This work offers valuable insights towards the design of more efficient photocatalysts, highlighting the potential of engineered NaTaO3 thin-film structures for advancing photocatalytic applications.
Read full abstract