Given an input query, a search and retrieval system fetches relevant information from a dataset. In the Engineering domain, such a system is beneficial for tasks such as design reuse. A two-dimensional (2D) sketch is more conducive for an end user to give as a query than a three-dimensional (3D) object. Such query sketches, nevertheless, will inevitably contain defects like incomplete lines, mesh lines, overdrawn areas, missing areas, etc. Since a retrieval system’s results are only as good as the query, it is necessary to improve the query sketches.In this paper, the problem of transforming a defective CAD sketch into a defect-free sketch is addressed using Generative Adversarial Networks (GANs), which, to the best of our knowledge, has not been investigated before. We first create a dataset of 534 hand-drawn sketches by tracing the boundaries of images of CAD models. We then pair the corrected sketches with their corresponding defective sketches and use them for training a C-WGAN (Conditional Wasserstein Generative Adversarial Network), called SketchCleanGAN. We model the transformation from defective to defect-free sketch as a factorization of the defective input sketch and then translate it to the space of defect-free sketch. We propose a three-branch strategy to this problem. Ablation studies and comparisons with other state-of-the-art techniques demonstrate the efficacy of the proposed technique. Additionally, we also contribute to a dataset of around 58000 improved sketches using the proposed framework.