We study the zero-temperature criticality of the Ising model on two-dimensional dynamical triangulations to contemplate its physics. As it turns out, an inhomogeneous nature of the system yields an interesting phase diagram and the physics at the zero temperature is quite sensitive about how we cool down the system. We show the existence of a continuous parameter that characterizes the way we approach the zero-temperature critical point and it may enter in a critical exponent.
Read full abstract