Carbon Dioxide (CO2) is often released in the process of natural gases and is one of greenhouse gases that are being treated as the most troublesome environmental issues. One of the promising ways to economically remove CO2 in natural gas processes is to use the technology of supersonic separation that makes use of non-equilibrium condensation in supersonic swirling flows in convergent-divergent nozzle using wet outlet. In the present study, the mixture of Methane (CH4) and CO2 was considered as natural gas. Two-dimensional convergent–divergent nozzle was employed to produce supersonic swirling flow with non-equilibrium condensation. The Peng–Robinson real gas model was used for the mixture gas. A nucleation equation and a droplet growth equation were incorporated into the governing equations of the compressible Navier–Stokes with the k-ω turbulence closure. The predicted results were verified and validated with existing experimental data. The convergent–divergent nozzle was varied to investigate its effect on the non-equilibrium condensation of CO2 in the mixture flow. The Technique for Order of Preference by Similarity to Ideal Solution method was applied to achieve the optimum case with amounts of wetness (the mass fraction of liquid CO2 to the summation of the mass fraction of liquid and vapor CO2 at the outlet of the nozzle) and kinetic energy. Three locations of wet outlets for the optimum case were analyzed. The results show that an increase in the divergent angle of the nozzle, swirling intensity, and inlet supply pressure results in more nucleation of CO2. However, the enhancement of mole fractions of CO2 decreases the nucleation rate and wetness. The exit wetness from wet outlets was increased with increasing distance from the throat.
Read full abstract