Dollar spot is a destructive foliar disease of amenity turfgrass caused by the fungus Clarireedia spp., and mainly Clarireedia jacksonii on the northern US region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as Sclerotinia sclerotiorum, however, the role of OA in the pathogenic development of C. jacksonii remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (Oah) gene that is required for the biosynthesis of OA was deleted from C. jacksonii wild-type stain. Two independent knockout mutants, ΔCjoah-1 and ΔCjoah-2, were generated and inoculated on potted creeping bentgrass along with a wild-type isolate (WT) and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants ΔCjoah-1 and ΔCjoah-2 exhibited 59.41% lower dollar spot severity compared to the WT and LWC-10 isolates. Oxalic acid production and environmental acidification were significantly reduced in both mutants when compared to the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in C. jacksonii virulence and provide novel directions for future management of dollar spot.