An investigation into the movement characteristics of granules during Earth Pressure Balance (EPB) shield tunneling contributes significantly to understanding the interaction between the shield machine and the soil. This understanding also enables researchers to gain deeper insights into the cutting and guiding effects of the shield cutterhead on the soil, thus providing a scientific basis for optimizing shield tunneling parameters and cutterhead designs. To achieve this, indoor model shield tunneling experiments were conducted using independently developed shield tunneling equipment and spatial positioning devices developed by our research group. The research investigated the spatial movement trajectories, radial diffusion, and axial movement characteristics of granules at the face subjected to the action of a spoke-type cutterhead. Furthermore, the study proposes the use of average diffusion degree and movement rates of granules as metrics for evaluating the cutting and steering performance of the cutterhead. The influence of cutterhead rotational speed and advance rate on the movement characteristics of granules was further explored based on these two indicators. The study’s findings reveal the following: (1) Granules at the face predominantly exhibit a spiral movement trajectory when the EPB shield tunneling machine operates in a dynamic equilibrium state. (2) The cutting and steering performance of the cutterhead’s various areas is enhanced progressively from the center to the outer edge, as evidenced by a gradual decrease in the average diffusion degree of granules and an increase in the average axial movement rate (AMR). (3) The AMR and average diffusion degree of granules are influenced by both the rotational speed of the cutterhead and the advance rate of the shield machine. Optimal matching of the rotational speed and advance rate maximizes the average AMR of granules, minimizes the average diffusion degree, reduces the torque on the cutterhead to its lowest point, and consequently, optimizes the efficiency of shield tunneling. This research presents a novel perspective and methodology for understanding the movement characteristics of granules during shield tunneling operations. The outcomes of this study provide valuable insights for the structural design of shield machine cutterheads and the optimization of tunneling parameters.
Read full abstract