The undoped and tungsten (W)-doped vanadium dioxide (VO2) thin films were prepared by electron beam evaporation associated with ion-beam-assisted deposition (IAD). The influence of different W-doped contents (3-5%) on the electrical, optical, structural, and thermo-mechanical properties of VO2 thin films was investigated experimentally. Spectral transmittance results showed that with the increase in W-doped contents, the transmittance in the visible light range (400-750 nm) decreases from 60.2% to 53.9%, and the transmittance in the infrared wavelength range (2.5 μm to 5.5 μm) drops from 55.8% to 15.4%. As the W-doped content increases, the residual stress in the VO2 thin film decreases from -0.276 GPa to -0.238 GPa, but the surface roughness increases. For temperature-dependent spectroscopic measurements, heating the VO2 thin films from 30 °C to 100 °C showed the most significant change in transmittance for the 5% W-doped VO2 thin film. When the heating temperature exceeds 55 °C, the optical transmittance drops significantly, and the visible light transmittance drops by about 11%. Finally, X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to evaluate the microstructure characteristics of VO2 thin films.
Read full abstract