A novel type of dual concentric core photonic crystal fiber (PCF) is proposed and theoretically analyzed, aiming at the design of tunable dispersive fiber elements for polarization-mode-dispersion (PMD) compensation. The adjustment of the fiber's geometrical birefringence through the proper selection of structural parameters leads to very high values of differential group-delay (DGD). Moreover, the value of DGD can be dynamically tuned by infiltrating the outer core capillaries of the PCF with an optical liquid, which allows for the thermal control of its refractive index. Such fibers are envisaged as tunable dispersive fiber elements for PMD compensation or emulation modules.