Classification of clear cell renal cell carcinoma (ccRCC) growth rates in patients with Von Hippel-Lindau (VHL) syndrome has several ramifications for tumor monitoring and surgical planning. Using two separate machine-learning algorithms, we sought to produce models to predict ccRCC growth rate classes based on qualitative MRI-derived characteristics. We used a prospectively maintained database of patients with VHL who underwent surgical resection for ccRCC between January 2015 and June 2022. We employed a threshold growth rate of 0.5cm per year to categorize ccRCC tumors into two distinct groups-'slow-growing' and 'fast-growing'. Utilizing a questionnaire of qualitative imaging features, two radiologists assessed each lesion on different MRI sequences. Two machine-learning models, a stacked ensemble technique and a decision tree algorithm, were used to predict the tumor growth rate classes. Positive predictive value (PPV), sensitivity, and F1-score were used to evaluate the performance of the models. This study comprises 55 patients with VHL with 128 ccRCC tumors. Patients' median age was 48years, and 28 patients were males. Each patient had an average of two tumors, with a median size of 2.1cm and a median growth rate of 0.35cm/year. The overall performance of the stacked and DT model had 0.77 ± 0.05 and 0.71 ± 0.06 accuracies, respectively. The best stacked model achieved a PPV of 0.92, a sensitivity of 0.91, and an F1-score of 0.90. This study provides valuable insight into the potential of machine-learning analysis for the determination of renal tumor growth rate in patients with VHL. This finding could be utilized as an assistive tool for the individualized screening and follow-up of this population.