Tuftsin, a tetrapeptide (Thr-Lys-Pro-Arg), acts as an immunopotentiating molecule with its ability to bind and activate many immune cells, including macrophages or monocytes, neutrophils and dendritic cells. The specific targeting activity of tuftsin has been further increased by its palmitoylation followed by its incorporation into the lipid bilayer of liposomes. Tuftsin-bearing liposomes (Tuft-liposomes) possess several characteristics that enable them to act as a potential drug and vaccine carriers. Tuft-liposomes-loaded anti-microbial drugs have been shown to be highly effective against many infectious diseases, including tuberculosis, leishmaniasis, malaria, candidiasis and cryptococosis. Moreover, Tuft-liposomes also increased the activity of anticancer drug etoposide against fibrosarcoma in mice. Tuft-liposomes showed the immune-potentiating effect and rejuvenated the immune cells in the leukopenic mice. In addition, antigens encapsulated in Tuftsin-bearing liposomes demonstrated greater immunogenicity by increasing the T cell proliferation and antibody secretion. Keeping into consideration their specific targeting and immunopotentiating effects, Tuft-liposomes may potentially be used as promising drug and vaccine delivery systems.
Read full abstract