Aims: Parietal epithelial cells (PECs) are potential stem cells within the glomerulus, migrating into site of podocyte loss to differentiate into podocytes. Little is known about the mechanism mediating differentiation of PECs into podocytes. Results: In vitro differentiation of PECs into podocytes led to upregulation of podocyte markers such as Wilms' tumor gene 1 (WT-1), Forkhead box C1 (FOXC1), synaptopodin and podocin, accompanied by increased mitochondrial abundance. Preincubation with a mitochondrial reactive oxygen species (ROS) inhibitor prevented all these events in PECs. In vivo, adriamycin (ADR)-treated mice exhibited albuminuria, decreased WT1 positive cells, and claudin-1 expressed in glomerular capillary tuft, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) overproduction in PECs. Expression of the ROS-related molecule nuclear factor erythroid 2-related factor 2 (Nrf2) and its target protein Brahma-related gene 1 (Brg1) increased during differentiation of PECs into podocytes. Suppressing Nrf2 or Brg1 reduced the differentiation of PECs, whereas overexpression had the opposite effect. Brg1 directly regulated WT-1 transcription in PECs. Activation of Nrf2 with bardoxolone-methyl (CDDO-Me) resulted in less proteinuria and more WT1 positive cells in ADR mice. PECs conditional human Nrf2 knock-in mice showed increased WT1 cell numbers. Conclusion: It concluded that mitochondria-derived ROS mediated differentiation of PECs into podocytes via Nrf2 and Brg1 signaling.