The lake-level highstands on the southern Tibetan Plateau (TP) during the Early-Middle Holocene have traditionally been attributed to increased monsoonal precipitation. However, there has been limited discussion and evaluation regarding how the elevated shoreline indicates the formation of mega-paleolakes and the effects of glacial meltwater on rising lake levels. In this study, we conducted an investigation into the well-preserved paleoshorelines of Rinqen Shubtso, a closed-basin lake system located on the southern TP. By utilizing 14C dating and analyzing shoreline elevations, the Holocene lake-level fluctuation history of Rinqen Shubtso was reconstructed. Through examining strontium (87Sr/86Sr) and oxygen isotopes (δ18O), as well as Rb/Sr ratios in tufa samples from the shoreline, we evaluated the relative contribution of glacial meltwater and East Asian Monsoon precipitation to the lake-level expansion throughout this period. Our findings indicate that prior to 8.5 cal ka BP, the lake level reached its highest elevation before experiencing a rapid drop by approximately 44 m within a short timeframe. Subsequently, maintaining a stable highstand between 8.5 and 5.8 cal ka BP before gradually declining to its present elevation thereafter. We argue that the glacial meltwater induced by rising temperature due to solar insolation likely played a significant role in contributing to these large amplitude high lake levels prior to 8.5 cal ka BP, whereas the maximum East Asian Monsoon precipitation was responsible for sustaining high water levels during 8.5–5.8 cal ka BP when the mean latitudinal position of the summer Intertropical Convergence Zone shifted northward until reached its northernmost point at 8.5 cal ka BP. Following 5.8 cal ka BP, with the weakening of summer monsoon precipitation observed, gradually decreased lake level occurred accordingly. Our results provide valuable insights into understanding past changes in lake level, which are of great importance to predicting future lake variations on the TP.