OBJECTIVE. The purpose of this study was to prospectively evaluate, using software support, the feasibility and the quantitative and qualitative image quality parameters of a tube voltage-tailored contrast medium (CM) application protocol for patient-specific injection during coronary CT angiography (CCTA). SUBJECTS AND METHODS. In the Voltage-Based Contrast Media Adaptation in Coronary Computed Tomography Angiography (VOLCANIC-CTA) study, a single-center trial, 120 patients referred for CCTA were prospectively assigned to a tube voltage-tailored CM injection protocol. Automated tube voltage levels were selected in 10-kV intervals and ranged from 70 to 130 kV, and the iodine delivery rate (IDR) was adapted to the tube voltage level using dedicated software. The administered CM volume (370 mg I/mL) ranged from 33 mL at 70 kV (IDR, 0.7 g I/s) to 65 mL at 130 kV (IDR, 1.7 g I/s). Attenuation was measured in the aorta and coronary arteries to calculate quantitative signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and 5-point scales were used to evaluate overall image quality. Radiation metrics were also assessed and compared among the protocols. RESULTS. The mean age of the study patients was 62.5 ± 11.9 (SD) years. Image quality was rated as diagnostic in all patients. Contrast attenuation peaked at 70 kV (p < 0.001), whereas SNR and CNR parameters showed no significant differences between tube voltage levels (p ≥ 0.085). Additionally, no significant differences in subjective image quality parameters were found among the different protocols (p ≥ 0.139). The lowest radiation dose values were observed in the group assigned to the 70-kV protocol, which had a median radiation effective dose of 2.0 mSv (p < 0.001). CONCLUSION. The proposed tube voltage-tailored injection protocol allows individualized scanning of patients undergoing CCTA and significantly reduces CM and radiation dose while maintaining a high diagnostic image quality.