The titanium-aluminum-vanadium alloy (Ti-6Al-4V) is frequently used in implantology due to its biocompatibility. The use of 3D printing enables the mechanical modification of implant structures and the adaptation of their shape to the specific needs of individual patients. The titanium alloy plates were designed using the 3D CAD method and printed using a 3D SLM printer. Qualitative tests were performed on the material surface using a microcomputed tomography scanner. The cytotoxicity of the modular titanium plates was investigated using the MTT assay on the L929 cell line and in direct contact with Balb/3T3 cells. Cell adhesion to the material surface was evaluated with hFOB1.19 human osteoblasts. Microbial biofilm formation was investigated on strains of Lactobacillus rhamnosus, Staphylococcus epidermidis, Streptococcus mutans and Candida albicans using the TTC test and scanning electron microscopy (SEM). The surface analysis showed the hydrophobic nature of the implant. The study showed that the titanium plates had no cytotoxic properties. In addition, the material surface showed favorable properties for osteoblast adhesion. Among the microorganisms tested, the strains of S. mutans and S. epidermidis showed the highest adhesion capacity to the plate surface, while the fungus C. albicans showed the lowest adhesion capacity. The manufactured modular plates have properties that are advantageous for the implantation and reduction in selected forms of microbial biofilm. Three-dimensional-printed modular titanium plates were investigated in this study and revealed the potential clinical application of this type of materials, regarding lack of cytotoxicity, high adhesion properties for osteoblasts and reduction in biofilm formation. The 3D CAD method allows us to personalise the shape of implants for individual patients.