Colorectal cancer (CRC) is commonly assessed by computed tomography (CT), but the associated radiation exposure is a major concern. This study aimed to quantitatively and qualitatively compare the image quality of virtual non-contrast (VNC) images reconstructed from arterial and portal venous phases with that of true non-contrast (TNC) images in patients with CRC to assess the potential of TNC images to replace VNC images, thereby reducing the radiation dose. A total of 69 patients with postoperative pathologically confirmed CRC at the West China Hospital of Sichuan University between May 2022 and April 2023 were enrolled in this cross-sectional study. The CT protocol included the acquisition of TNC images, arterial and portal venous phase images; the VNC images were reconstructed from the two postcontrast phase images. Several parameters, including the CT attenuation value, absolute attenuation error, imaging noise [standard deviation (SD)], signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR), were measured in multiple abdominal structures for both the TNC and VNC images. Two blinded readers assessed the subjective image quality using a five-point scale. Interobserver agreement was evaluated using interclass correlation coefficients (ICCs). The paired t-test and Wilcoxon signed-rank test were used to compare the objective and subjective results between the TNC and VNC images. Individual measurements of radiation doses for the TNC scan and contrast scan protocols were recorded. A total of 2,070 regions of interest (ROIs) of the 69 patients were analyzed. Overall, the VNC images exhibited significantly lower attenuation values and SD values than the TNC images in all tissues, except for the abdominal aorta, portal vein, and spleen. The mean absolute attenuation errors between the VNC and TNC images were all less than 10 Hounsfield units (HU). The percentages of absolute attenuation errors less than 5 and 10 HU in the VNC images from the arterial phase (VNCa) were 78.99% and 97.97%, respectively, while those from the portal venous phase (VNCp) were 81.59% and 96.96%, respectively. The absolute attenuation errors between the TNC and VNCa images were smaller than those between the TNC and VNCp images for tumors [VNCaerror: 2.77, interquartile range (IQR) 1.77-4.22; VNCperror: 3.27, IQR 2.68-4.30; P=0.002]. The SNR values and CNR values in the VNC images were significantly higher than those in the TNC images for all tissues, except for the portal vein and spleen. The image quality was rated as excellent (represented by a score of 5) in the majority of the TNC and VNC images; however, the VNC images scored lower than the TNC images. Eliminating the TNC phase resulted in a reduction of approximately 37.99% in the effective dose (ED). The VNC images provided accurate CT attenuation, good image quality, and lower radiation doses than the TNC images in CRC, and the VNCa images showed minimal differences in the CT attenuation of the tumors.