Commercially important fish spend their vulnerable early life stages in the Kuroshio Current, resulting in high fishery production even in the vicinity of poor prey availability under oligotrophic conditions. Nevertheless, little information is available on how ichthyoplankton are supported by trophodynamics in complicated food webs. Here, we have explored trophic sources and pathways toward ichthyoplankton in the Kuroshio and its neighboring waters based on metabarcoding analysis of gut DNA content for major taxonomic groups of mesozooplankton and ichthyoplankton. Calanoids were found to be the most predominant and frequently appearing prey, whereas non-crustaceans were the secondary prey for most mesozooplankton and ichthyoplankton groups. Trophic networks based on gut DNA content demonstrated that calanoids were the most important sector with multiple linkages among their prey and predators, and gelatinous and non-crustacean mesozooplankton were the secondary sectors. These findings suggest that calanoids are important hubs of trophic pathways toward ichthyoplankton, and that gelatinous and non-crustacean mesozooplankton groups strengthen trophic relationships with multiple components. Contrary to general thought, our metabarcoding analysis has revealed that trophodynamics toward ichthyoplankton are not strongly dependent on the grazing food chain, but are supported by multiple trophic pathways in the Kuroshio and its neighboring waters.
Read full abstract