Increasing demands for molecules with skeletal complexity, including those of stereochemical diversity, require new synthetic strategies. Carbohydrates have been used extensively as chiral building blocks for the synthesis of various complex molecules. On the other hand, the vinyl sulfone group has been identified as a unique functional group, which acts either as a Michael acceptor or a 2π partner in cycloaddition reactions. A combination of the high reactivity of the vinyl sulfone group and the in-built chiralities of carbohydrates has the potential to function as a powerful tool to generate a wide variety of enantiomerically pure reactive intermediates. Since CS bond formation in carbohydrates is easily achieved with regioselectivity, further synthetic manipulations of these thiosugars has led to the generation of a wide range of vinyl sulfone-modified furanosyl, pyranosyl, acyclic, and bicyclic carbohydrates. Several approaches have been studied to standardize the preparative methods for accessing vinyl sulfone-modified carbohydrates at least on a gram scale. Reactions of these modified carbohydrates with appropriate reagents afford a large number of new chemical entities primarily via (i) Michael addition reactions, (ii) desulfostannylation, (iii) Michael-initiated ring-closure reactions, and (iv) cycloaddition reactions. A wide range of desulfonylating reagents in the context of sensitive molecules such as carbohydrates have also been extensively studied. Applications of these strategies have led to the synthesis of (a) amino sugars and branched-chain sugars, (b) C-glycosides, (c) enantiomerically pure cyclopropanes, five- and six-membered carbocycles, (d) saturated oxa-, aza-, and thio-monocyclic heterocycles, (e) bi-and tricyclic saturated oxa and aza heterocycles, (f) enantiomerically pure and trisubstituted pyrroles, (g) 1,5-disubstituted 1,2,3-triazolylated carbohydrates and the corresponding triazole-linked di- and trisaccharides, (h) divinyl sulfone-modified carbohydrates and densely functionalized S,S-dioxothiomorpholines, and (i) modified nucleosides. Details of reaction conditions were incorporated as much as possible and mechanistic discussions were included wherever necessary.