The commonly used artificial light sources, such as fluorescent lamps and white light-emitting diodes, often have a high ratio of blue light emission, which poses potential blue light hazards, especially one of the main culprits leading to eye diseases. Therefore, developing novel white lighting sources with low blue-hazard is highly appreciated. In this work, an air-stable and color-tunable triplet–triplet annihilation upconversion (TTA-UC) mechanism was proposed to realize the low blue-hazard white-light emission. The proposed design was composed of three primary RGB colors from the annihilator (9,10-diphenylanthracene, DPA), the laser excitation source, and the photosensitizer (palladium (II) octaetylporphyrin, PdOEP), respectively. The introduction of oil-in-water (o/w) microemulsion can effectively block the potential oxygen-induced triplet-quenching and benefit high UC efficiency. Moreover, either raising ambient temperatures or adding isobutanol can activate the UC process to yield white-light emission. Notably, the white-light emission with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.33, 0.33) as well as a low ratio of blue emission (14.2 %) was achieved at an ambient temperature of 42 °C. Therefore, the proposed air-stable TTA-UC mechanism can significantly lower the blue-hazard and provide a novel solution for applications in lighting and display.
Read full abstract