Deferoxamine (DFO) is one of the most potent iron ion complexing agent belonging to a class of trihydroxamic acids. The extremely high stability constant of the DFO–Fe complex (log β = 30.6) prompts the use of deferoxamine as a targeted receptor for scavenging Fe(III) ions. The following study aimed at deferoxamine immobilization on three different supports: poly(methyl vinyl ether-alt-maleic anhydride), silica particles, and magnetite nanoparticles, leading to a class of hybrid materials exhibiting effectiveness in ferric ion adsorption. The formed deferoxamine-loaded hybrid materials were characterized with several analytical techniques. Their adsorptive properties toward Fe(III) ions in aqueous samples, including pH-dependence, isothermal, kinetic, and thermodynamic experiments, were investigated. The materials were described with high values of maximal adsorption capacity qm, which varied between 87.41 and 140.65 mg g–1, indicating the high adsorptive potential of the DFO-functionalized materials. The adsorption processes were also described as intense, endothermic, and spontaneous. Moreover, an exemplary magnetically active deferoxamine-modified material has been proven for competitive in vitro binding of ferric ions from the biological complex protoporphyrin IX–Fe(III), which may lead to a further examination of the materials’ biological or medical applicability.