Feedback from massive stars is thought to play an important role in the evolution of molecular clouds. In this work we analyse the effects of stellar winds and supernovae (SNe) in the evolution of two massive ($\sim 10^6\,M_\odot$) giant molecular clouds (GMCs): one gravitationally bound collapsing cloud and one unbound cloud undergoing disruption by galactic shear. These two clouds have been extracted from a large scale galaxy model and are re-simulated at a spatial resolution of $\sim 0.01$ pc, including feedback from winds, SNe, and the combined effect of both. We find that stellar winds stop accretion of gas onto sink particles, and can also trigger star formation in the shells formed by the winds, although the overall effect is to reduce the global star formation rate of both clouds. Furthermore, we observe that winds tend to escape through the corridors of diffuse gas. The effect of SNe is not so prominent and the star formation rate is similar to models neglecting stellar feedback. We find that most of the energy injected by the SNe is radiated away, but overdense areas are created by multiple and concurrent SN events especially in the most virialised cloud. Our results suggest that the impact of stellar feedback is sensitive to the morphology of star forming clouds, which is set by large scale galactic flows, being of greater importance in clouds undergoing gravitational collapse.
Read full abstract