Trigeminal neuralgia is a manifestation of orofacial neuropathic pain disorder, always deemed to be an insurmountable peak in the field of pain research and treatment. The pain is recurrent, abrupt in onset and termination similar to an electric shock or described as shooting. A poor quality of life has been attributed to trigeminal neuralgia, as the paroxysms of pain may be triggered by innocuous stimuli on the face or inside the oral cavity, such as talking, washing face, chewing and brushing teeth in daily life. The pathogenesis of trigeminal neuralgia has not been fully elucidated, although the microvascular compression in the trigeminal root entry zone is generally considered to be involved in the emergence and progression of the pain disorder. In addition, orofacial neuropathic pain restricted to one or more divisions of the trigeminal nerve might be secondary to peripheral nerve injury. Based on current hypotheses regarding the potential causes, a variety of animal models have been designed to simulate the pathogenesis of trigeminal neuralgia, including models of compression applied to the trigeminal nerve root or trigeminal ganglion, chronic peripheral nerve injury, peripheral inflammatory pain and center-induced pain. However, it has not yet been possible to determine which model can be perfectly employed to explain the mechanisms. The selection of appropriate animal models is of great significance for the study of trigeminal neuralgia. Therefore, it is necessary to discuss the characteristics of the animal models in terms of animal strains, materials, operation methods and behavior observation, in order to gain insight into the research progress in animal models of trigeminal neuralgia. In the future, animal models that closely resemble the features of human trigeminal neuralgia pathogenesis need to be developed, with the aim of making valuable contributions to the relevant basic and translational medical research.
Read full abstract