We report copper(II) and copper(III) trifluoromethyl complexes supported by pyridinedicarboxamide ligand (L) as a platform for investigating the role of electron transfer in C(sp2)-H trifluoromethylation. While the copper(II) trifluoromethyl complex is unreactive towards (hetero)arenes, the formal copper(III) trifluoromethyl complex performs C(sp2)-H trifluoromethylation of a wide range of (hetero)arenes. Mechanistic studies using the copper(III) trifluoromethyl complex suggest that the mechanism of arene trifluoromethylation is substrate-dependent. When the thermodynamic driving force for electron transfer is high, the reaction proceeds through a previously unidentified single electron transfer (SET) mechanism, where an initial electron transfer occurs between the substrate and oxidant prior to CF3 group transfer. Otherwise, a CF3 radical release/electrophilic aromatic substitution (SEAr) mechanism is followed. These studies provide valuable insights into the role of strong oxidants and potential mechanistic dichotomy in Cu-mediated C(sp2)-H trifluoromethylation.
Read full abstract