In the present study, Tricholoma giganteum AGHP laccase was immobilized on amino-functionalized cadmium oxide nanoparticles (CdO NPs) which was carried out by glutaraldehyde. The synthesized CdO NPs were characterized by using transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) analysis which reflected the NPs had an average size of 35nm with hexagonal and irregular shapes. Fourier transform infra-red (FTIR) study of laccase with amino-functionalized CdO (lac-CdO) NPs confirmed the crosslinking of laccase with CdO NPs. With immobilized laccase, a shift in pH (5.5) and temperature (35℃) optima was observed, when compared to free laccase (pH 4.5, 30℃). Lac-CdO NPs displayed 1.15 times higher stability (90 ± 0.47%) than free laccase (78 ± 0.69%) at optimum pH of 5.5. Immobilized laccase showed 1.19-fold improvement in thermal stability and 2.25-fold increment in half-life after 3h of incubation at 50℃ as compared to free laccase. Recycling capability study demonstrated that lac-CdO NPs were able to retain 85 ± 0.68% of relative activity at the end of 20th 2,2-azinobis-3-ethylbenzthiozoline-6-sulfonic acid (ABTS) oxidation cycle. In addition, lac-CdO NPs showed remarkable reusability in catalysing various organic synthesis reactions even after several cycle of catalysis. Furthermore, the interactions of organic synthesis reactions and interacted residues were observed by assessing the molecular docking poses of T. giganteum laccase with substrates. The obtained results would be advantageous to develop a biocatalyst over a chemical catalyst for effective synthesis of potent organics having industrial importance.
Read full abstract