A tetraphenylethylene (TPE) derivative, TPEPhDAT, modified by diaminotriazine (DAT), was prepared by successive Suzuki-Miyaura coupling and ring-closing reactions. This compound exhibits aggregation-induced emission enhancement (AIEE) properties in the DMSO/MeOH system, with a fluorescence emission intensity in the aggregated state that is 5-fold higher than that of its counterpart in a dilute solution. Moreover, the DAT structure of the molecule is a good acceptor of protons; thus, the TPEPhDAT molecule exhibits acid-responsive fluorescence. TPEPhDAT was protonated by trifluoroacetic acid (TFA), leading to fluorescence quenching, which was reversibly restored by treatment with ammonia (on-off switch). Time-dependent density functional theory (TDDFT) computational studies have shown that protonation enhances the electron-withdrawing capacity of the triazine nucleus and reduces the bandgap. The protonated TPEPhDAT conformation became more distorted, and the fluorescence lifetime was attenuated, which may have produced a twisted intramolecular charge transfer (TICT) effect, leading to fluorescence redshift and quenching. MeOH can easily remove the protonated TPEPhDAT, and this acid-induced discoloration and erasable property can be applied in anti-counterfeiting.