To optimize the microstructure and properties of NbCp/Fe composites, this study considered factors such as load transfer, plastic strain, matrix damage, and interface debonding. A two-dimensional finite element model was constructed using ABAQUS software. Random adsorption algorithm was used to realize the random distribution of particles within the representative volume element, and interface damage was described using a cohesive zone model. The effects of particle shape and thermal residual stress on the tensile properties of NbCp/Fe composites were investigated. The results show that circular particles uniformly distribute the stress during the tensile process, effectively enhancing the tensile properties of the composites. Conversely, triangular particles, with obvious sharp corners, reduce their tensile properties, particularly in the presence of thermal residual stresses, which further aggravates the stress concentration between the particles and the matrix. This leads to a decrease in the strength and toughness of the material.
Read full abstract