In this paper, we examined the elevation-dependent warming (EDW) patterns of MODIS LST across different seasons in the Qinling-Daba Mountains, further investigate the connections between the EDW patterns of Land surface temperature (LST) and land surface albedo (ALB) as well as aerosol optical depth (AOD). The key findings include: (1) Our study reveals a robust correlation between LST and air temperature in the Qinling-Daba Mountains, suggesting the feasibility of using MODIS LST to predict the temperature trends (2) During the period from 2001 to 2010, MODIS LST shows a significant EDW trend, primarily in the spring season. In contrast, a negative EDW is observed in the period during 2011–2021, which is contrary to the earlier decade, particularly during the autumn and winter seasons. (3) EDW of MODIS LST is affected by the combination of ALB and AOD. The former has a negative influence on the change of LST, particularly above 2500 m in elevation. However, the latter is negatively correlated with the trend of MODIS LST, primarily at lower and middle altitudes (0–2500 m). This study gives a comprehensive explanation for the EDW of the temporal variations of LST in the Qinling-Daba Mountains to improve our understanding of the complex interactions and potential future climate scenarios in the region.
Read full abstract