Methodologies were developed to classify wetlands (Open Bog, Treed Bog, Open Fen, Treed Fen, and Swamps) from remotely sensed data using advanced classification algorithms through two hierarchical approaches. The data utilized included multispectral optical and thermal data (Landsat-5, and Landsat-8), radar imagery (Sentinel-1), and a digital elevation model. Goals were to determine the best way to combine imagery to classify wetlands through hierarchically based classification approaches to produce more accurate and efficient maps compared to standard classification. Algorithms used were Random Forest (RF), and Naïve Bayes. A hierarchically based RF classification methodology produced the most accurate classification result (91.94%). The hierarchically based approaches also improved classification accuracies for low-quality data, as defined through feature analysis, when compared to a nonhierarchical classifier. The hierarchical approaches also produced a significant increase in classification accuracy for the Naïve Bayes classifier versus the standard approach (∼12% increase) while not significantly increasing computation time – comparable in accuracy to the RF tests for around 20% the computational effort. Preselection of spectral bands, polarizations and other input parameters (Normalized Difference Vegetation Index, Normalized Difference Water Index, albedo, slope, etc.) using log-normal or RF variable importance analysis was very effective at identifying low-quality features and features which were of higher quality.