AbstractA notable characteristic of terrain in non‐urbanized deglaciated areas of northeastern North America is the microtopography created by processes related to surficial geology, deglaciation and mechanical disturbances to surface materials from excavating events, most of which are caused by tree throw in the modern landscape. The features are often on the scale of 1–4 m across and decimetres to a metre in depth, appearing as ‘puddles’ during intense or high‐magnitude precipitation events. Generalized storage capacity values have been summarized in textbooks for varied landscape conditions, but surprisingly little information is available about how microtopography and related surface water storage varies in dominant physiographic settings in deglaciated landscapes defined by slope, surficial geology and land cover conditions. The increasing availability of elevation data at a horizontal resolution of 2 m or higher has made it possible to remotely evaluate differences in terrain elevation and quantify upland surface water storage capacity from relatively small topographic depressions. Here, we describe and quantify these topographic features in several coastal and inland watersheds in the state of Maine (USA) with measurements of depression volume calculated from digital elevation models (DEMs) using a pit filling approach. Results show that microtopographic storage capacity varies with slope and land cover conditions in deglaciated terrain of northeastern North America. Basin‐average surface water depression storage capacity estimates range from ~4 mm to as low as 0.2 mm. Human interventions such as clearing land for agriculture are associated with lower microtopographic surface water storage capacity than forested landscapes in the region.