Targeted therapies, specifically ErbB family tyrosine kinase inhibitors, have demonstrated potential for improving outcomes in patients with ErbB2-positive breast cancer. Despite their effectiveness, these therapies are associated with limitations, including high costs, side effects, drug resistance, lack of specificity, and toxicity. To overcome these challenges, drug repurposing has emerged as a promising strategy in breast cancer treatment. The aim of this investigation was to assess the influence of calcitriol on breast cancer cell lines expressing ErbB2 and comparing its effects with the conventional treatment, neratinib. We employed an MTT test to determine cell viability and utilized staining techniques to assess cell apoptosis. Flow cytometry was used to evaluate cell cycle arrest, while a scratch wound healing test was performed to examine cancer cell migration ability. Additionally, gene expression studies were conducted for calcitriol and neratinib to support our hypothesis regarding the ErbB2 gene. The repurposing of calcitriol demonstrated enhanced efficacy in suppressing cancer cell growth in ErbB2- positive breast cancer. Proportionally, calcitriol significantly reduced the viability of SK-BR-3 cells, similar to neratinib. Furthermore, calcitriol exhibited significant cytotoxicity against neratinib and substantially reduced breast cancer cell growth. These findings were corroborated by the wound healing assay, cell cycle arrest analysis, and gene expression studies, demonstrating comparable efficacy to the standard treatment, neratinib. The findings from this investigation offer compelling proof that highlights the promising role of calcitriol as an adjuvant drug with antiproliferative and antitumoral effects in the management of ErbB2-positive breast carcinoma patients. Therefore, we recommend further evaluation of calcitriol in clinical settings, particularly for the treatment of ErbB2-positive breast cancer, as it shows promise as a valuable therapeutic option.
Read full abstract