This study aimed to develop nomogram prediction models to differentiate between adult-onset Still's disease (AOSD) and sepsis. We retrospectively collected laboratory test data from 107 hospitalized patients with AOSD and sepsis at the Affiliated Hospital of Xuzhou Medical University. Multivariate binary logistic regression was used to develop nomogram models using arthralgia, WBC, APTT, creatinine, PLT, and ferritin as independent factors. The performance of the model was evaluated by the bootstrap consistency index and calibration curve. Model 1 had an AUC of 0.98 (95% CI, 0.96-1.00), specificity of 0.98, and sensitivity of 0.94. Model 2 had an AUC of 0.96 (95% CI, 0.93-1.00), specificity of 0.92, and sensitivity of 0.94. The fivefold cross-validation yielded an accuracy (ACC) of 0.92 and a kappa coefficient of 0.83 for Model 1, while for Model 2, the ACC was 0.87 and the kappa coefficient was 0.74. The nomogram models developed in this study are useful tools for differentiating between AOSD and sepsis. Key Points • The differential diagnosis between AOSD and sepsis has always been a challenge • Delayed treatment of AOSD may lead to serious complications • We developed two nomogram models to distinguish AOSD from sepsis, which were not previously reported • Our models can be used to guide clinical practice with good discrimination.
Read full abstract