To explore the potential of transnasal drug delivery systems (DDS) as an effective means of bypassing the bloodbrain barrier (BBB) for enhanced central nervous system (CNS) targeting, aiming to improve therapeutic outcomes for CNS disorders while reducing systemic side effects. A review of current and emerging DDS technologies, including polymer nanoparticles, liposomes, and micelles, was conducted to assess their suitability for precision-targeted delivery to the brain through the transnasal route. The investigated DDS demonstrate promising capabilities for CNS targeting via the nasal pathway, effectively preserving both the nasal mucosa and CNS integrity. These systems enhance drug precision within neural tissues, potentially improving therapeutic outcomes without harming adjacent tissues. Transnasal DDS offer a promising alternative to traditional delivery methods, with significant potential to advance the treatment of cerebrovascular diseases, neurodegenerative disorders, brain tumors, and psychiatric conditions. This approach represents an evolving frontier in neurotherapeutics, with the potential to transform CNS drug delivery practices.