Abstract Adaptive immune receptor (AIR) repertoire diversity assays are susceptible to biases arising from variations in conditions in the RT-PCR and next-generation sequencing (NGS) steps. We designed synthetic TCR and BCR spike-in controls to mitigate these biases and to serve as universal standards for any PCR-based immune receptor profiling assay. We synthesized 48 BCR constructs representing different IGH, IGK, and IGL genes and 39 TCR constructs for TRB, TRA, TRG, and TRD genes. The spike-in controls were tested as (16 × 3) BCR constructs and (13 × 3) TCR Triplex isoform pools added to multiple samples in the same batch to detect cross-contamination across samples. We successfully discriminated between controls and background sequences by combining a unique molecular identifier (UMI)-based correction strategy with spike-in controls at the data analysis step. We also tested 48 BCR and 39 TCR Premixed Controls by spiking into peripheral blood mononuclear cells (PBMC) RNA samples before reverse transcription using Cellecta’s DriverMap™ Adaptive Immune Receptor Profiling Assay that uses a multiplex RT-PCR approach with gene-specific primers and UMIs. We successfully used it to evaluate assay performance by adding premixed controls at different concentrations. Results showed a linear trend as the number of spike-in molecules increased. Our analysis revealed an average sequencing error rate of 0.4%-0.8% per base, aligning with the reported error rate range of Illumina sequencing. This suggests the reliability of our spike-in controls, which can be used to rectify biases in the AIR protocol and accurately estimate error and mutation rates for the DriverMap AIR assay or any other sequencing-based immune receptor profiling assay. This innovative approach enhances the robustness of immune receptor profiling technology, facilitating more accurate assessments of repertoire diversity. Citation Format: Alex Chenchik, Tianbing Liu, Mikhail Makhanov, Dongfang Hu, Khadija Ghias, Paul Diehl. Universal synthetic TCR/BCR spike-in controls to evaluate immune receptor profiling assay and next-generation sequencing performance [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 339.
Read full abstract