In this paper, it’s described a method that allows to implement highly efficient amplitude modulation of radiation at the output of a ring resonator by controlling its artificial light losses, which are derived from it using two Y-shaped couplers. At the same time, the necessary constant level of light energy is provided in the resonator, which, due to the absence of radiation losses when entering it into the ring resonator, allows one to achieve a significantly lower value of the required control electric voltage than existing electro-optical modulators, and, therefore, a smaller amount of consumed electric power and an increase in working frequency range of modulation of optical radiation. The possibility of implementing the method under consideration is ensured by the fact that the input of light energy into the ring resonator can be carried out without loss, in addition, single-mode waveguides are able to maintain the temporal coherence of transmitted radiation, which ensures the implementation of multipath interference. The stabilization of the optical characteristics of a ring resonator, which is very sensitive to changes in various external factors, for example, temperature, pressure, vibrations, can be achieved by electro-optical correction of the length of the optical path of the resonator by introducing a controlled phase element operating on the transverse electro-optical effect into the ring resonator and implementing corresponding optoelectronic feedback circuit.