Abstract A comparison of transform margins that started their evolution as continental transforms shows differences in their tectonic style, which can be attributed to the variable kinematic adjustments they underwent during the post-breakup continental-oceanic stage of their development. Three end-member examples are presented in detail. The Cape Range transform fault zone (Western Australia) retained its strike-slip character during its entire continental-oceanic stage, as documented by the transform-perpendicular system of spreading-related magnetic stripe anomalies. The Coromandal transform fault zone (Eastern India) adjusted its kinematics to a transtensional one during its continental-oceanic stage, as indicated by the transform-oblique system of magnetic stripe anomalies and extensional component of movement indicated by a narrow zone of crustal thinning. The Romanche transform fault zone (Equatorial Africa) adjusted its kinematics to transpressional, as documented by the changing geometries of magnetic stripe anomalies and transpressional folding during its continental-oceanic development stage. Based on the recognition of the aforementioned adjustments, we suggest a new categorization of transforms into (1) those that experience transpressional adjustment, (2) those that experience transtensional adjustment and (3) those that do not experience any adjustment during their continental-oceanic development stage.
Read full abstract