The main goal of this paper is to determine the order of the paragenetic sequence and phase transitions of the Ni–Fe sulfide association hosted in listvenites. Listvenites are hydrothermally altered mafic and ultramafic rocks that are often associated with active tectonic settings, such as transform faults, suture zones, and regional extensional faults, usually in contact with volcanic or carbonate rocks. Listvenitization is displayed by a carbonation process when the original olivine, pyroxene, and serpentine group minerals are altered to Mg–Fe–Ca carbonates (magnesite, calcite, dolomite, and siderite), talc, quartz, and accessory Cr spinel, fuchsite, and Ni–Fe sulfides. The formed rocks are highly reactive; therefore, very often, younger hydrothermal processes are observed, overprinting the mineralogy and geochemistry of the original listvenitization products, including accessory Ni–Fe sulfide paragenesis. The studied samples of listvenites were collected from two locations in Kosovo (Vardar Zone): Janjevo and Melenica. The Ni–Fe sulfide textures and relationships with the surrounding listvenite-hosted minerals were obtained using reflected and transmitted light microscopy, while their chemical composition was determined using an electron microprobe. They form accessory mono-or polymetallic aggregates that usually do not exceed 100 μm in size disseminated in the studied listvenites. Generally, the paragenetic sequence of Ni–Fe sulfides is divided into three stages. The first pre-listvenite magmatic phase is represented by pentlandite and millerite. The second listvenite stage consists of Ni–Co bearing pyrite I (Ni content up to 11.57 wt.% [0.24 apfu], and Co content up to 6.54 wt.% [0.14 apfu]) and differentiated thiospinels (violarite + siegenite ± polydymite). The last, late listvenite stage is represented by younger gersdorffite−ullmannite and base metal mineralization: pyrite + marcasite + sphalerite + galena ± chalcopyrite ± sulfosalts. The findings obtained should help in the interpretation of many disseminated accessory Ni–Fe–Co mineralizations associated with mafic and ultramafic rocks worldwide.