Most of the traditional hybrid electric vehicles (HEVs) choose to optimize the transmission ratio parameters, and the parameter changes of the whole vehicle and other components are only calculated as fixed values. It is difficult to give consideration to the optimization of the economy and power of hybrid vehicles. Therefore, the research proposes to build the transmission ratio, the required power of the vehicle’s working mode, and other models through the dynamic analysis. The parameters of the whole vehicle are optimized on the basis of parameter matching. At the same time, this paper chooses to adopt a hybrid optimization algorithm, combining particle swarm optimization (PSO) and genetic algorithm (GA). The weighted average method and constraint method are used to design the fitness function. The simulation experiment is carried out by Cruise software and MATLAB. Compare the iterative fitness of the PSO-GA algorithm with the traditional PSO and GA algorithm. It can be concluded that PSO-GA converges at the 12th iteration, with an average optimal fitness of 0.5239, which is higher than the traditional algorithm. At the same time, the parameter optimization of PSO-GA and the simulated annealing algorithm is compared. It is found that in the same task, the gasoline consumption after SA algorithm optimization is 0.561 L, while the fuel consumption under PSO-GA algorithm optimization is 0.475 L. The method proposed in this study has improved the power and economy of the HEV model and is effective.
Read full abstract