The rapid advancement of technology has led to the proliferation of devices connected to the Internet of Things (IoT) networks, bringing forth challenges in both energy management and secure data communication. In addition to energy constraints, IoT networks face threats from malicious nodes, which jeopardize the security of communications. To address these challenges, we propose an Energy-aware secure Routing scheme via Two-Way Trust evaluation (ERTWT) for IoT networks. This scheme enhances network protection against various attacks by calculating trust values based on energy trust, direct trust, and indirect trust. The scheme aims to enhance the efficiency of data transmission by dynamically selecting routes based on both energy availability and trustworthiness metrics of fog nodes. Since trust management can guarantee privacy and security, ERTWT allows the service requester and the service provider to check each other's safety and reliability at the same time. In addition, we implement Generative Flow Networks (GFlowNets) to predict the energy levels available in nodes in order to use them optimally. The proposed scheme has been compared with several advanced energy-aware and trust-based routing protocols. Evaluation results show that ERTWT more effectively detects malicious nodes while achieving better energy efficiency and data transmission rates.
Read full abstract