Sudden jump of transmembrane pressure (TMP) in membrane bioreactors (MBRs), associated with abrupt aggravation of membrane fouling, limits practical applications of MBRs and calls for effective mitigation strategies. While the TMP jump is generally related to the bacterial activity of biocakes, the mechanisms underlying the TMP jump remain unclear. Herein, we conducted various backwash protocols with different nutrient (e.g., nitrate and sodium acetate) loadings on fouled membranes in MBRs to reveal the critical role of bacterial activity of biocakes for the TMP jump. The filtration tests showed a lower TMP jump rate for the membrane backwashed with a nutrient solution (a mixture of 180 mg/L NaNO3 and 200 mg/L NaAc, averaged at 1.40 kPa/d) than that backwashed with tap water (averaged at 3.56 kPa/d), implying that TMP jump could be efficiently mitigated by providing sufficient nutrients to biocake bacteria. The characterization of biocakes showed that high-nutrient solution backwash considerably increased bacterial viability and activity, while considerably reducing biomolecule accumulation on membranes. The keystone taxa (e.g., g_Aeromonas and o_Chitinophagaceae) in the network of nutrient-enriched biocake communities were involved in nitrate reduction and biomolecule degradation. Ecological null model analyses revealed that the deterministic manner mainly shaped biocake communities with high-nutrient availability. Overall, this study highlights the significance of the bacterial activity of biocakes for TMP development and provides potential alternatives for controlling membrane fouling.
Read full abstract