Pro-inflammatory cytokines in muscle play a pivotal role in physiological responses and in the pathophysiology of inflammatory disease and muscle atrophy. Lactobacillus delbrueckii (LD), as a kind of probiotics, has inhibitory effects on pro-inflammatory cytokines associated with various inflammatory diseases. This study was conducted to explore the effect of dietary LD on the lipopolysaccharide (LPS)-induced muscle inflammation and atrophy in piglets and to elucidate the underlying mechanism. A total of 36 weaned piglets (Duroc × Landrace × Large Yorkshire) were allotted into three groups with six replicates (pens) of two piglets: (1) Nonchallenged control; (2) LPS-challenged (LPS); (3) 0.2% LD diet and LPS-challenged (LD+LPS). On d 29, the piglets were injected intraperitoneally with LPS or sterilized saline, respectively. All piglets were slaughtered at 4 h after LPS or saline injection, the blood and muscle samples were collected for further analysis. Our results showed that dietary supplementation of LD significantly attenuated LPS-induced production of pro-inflammatory cytokines IL-6 and TNF-α in both serum and muscle of the piglets. Concomitantly, pretreating the piglets with LD also clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits in the muscle, which correlated with the anti-inflammatory effects of LD on the muscle of piglets. Meanwhile, LPS-induced muscle atrophy, indicated by a higher expression of muscle atrophy F-box, muscle RING finger protein (MuRF1), forkhead box O 1, and autophagy-related protein 5 (ATG5) at the transcriptional level, whereas pretreatment with LD led to inhibition of these upregulations, particularly genes for MuRF1 and ATG5. Moreover, LPS-induced mRNA expression of endoplasmic reticulum stress markers, such as eukaryotic translational initiation factor 2α (eIF-2α) was suppressed by pretreatment with LD, which was accompanied by a decrease in the protein expression levels of IRE1α and GRP78. Additionally, LD significantly prevented muscle cell apoptotic death induced by LPS. Taken together, our data indicate that the anti-inflammatory effect of LD supply on muscle atrophy of piglets could be likely regulated by inhibiting the secretion of pro-inflammatory cytokines through the inactivation of the ER stress/NF-κB singling pathway, along with the reduction in protein degradation.
Read full abstract