In a great many control systems, error is primarily caused by transient load torques, often the result of static friction. To keep the error due to transient load torques small a high output inertia, and high values of gain crossover frequencies are required in the control loops. Integral networks that increase the static stiffness of the control system generally have negligible effect against transient load torques. The maximum error produced by a step of torque is approximately as follows for a rate feedback system: <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\theta_{e} = \frac{T}{J \omega_{c}\omega_{r}}</tex> (1) where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</tex> is the magnitude of the step of torque, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</tex> is the output intertia, ω <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> , is the gain-crossover frequency of the position loop, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega{r}</tex> is the gain-crossover frequency of the rate loop. Thus, if the error is to be kept within a given bound <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\theta_{e}</tex> , the maximum allowable friction torque T <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</inf> is given by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T_{f} \leq \theta_{e}J\omega_{c}\omega_{r}</tex> (2) Structural compliance is a severe limitation upon the allowable values of gain-crossover frequency. The maximum value of rate loop gain-crossover frequency ω <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</inf> in practice is usually about half the natural frequency of the structure ω <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</inf> . The position loop gain-cross-over frequency is usually at least a factor of three below that of the rate loop. Therefore one can assume that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega_{r} \leq \frac{\omega_{n}}{2}</tex> (3) <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\omega_{c} \leq \frac{\omega_{r}}{3} \leq \frac{\omega_{n}}{6}</tex> (4) Substituting (3) and (4) into (2) gives <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T_{f} \leq (1/12)J\omega_{n}^{2}\theta_{e}</tex> (5) Equation (5) shows that regardless of the type of control system used, there is a maximum possible value of friction torque that is related only to the allowable error, the output inertia, and the structural natural frequency. Although this limitation is derived in terms of a specific servo configuration, it also holds approximately for other configurations, and cannot be improved by integral networks.