High burnup fuel in excess of ~6268 GWd/MTU has been observed to severely fragment when subjected to temperature transient conditions as in a loss-of-coolant accident. In the event of cladding failure, the severely fragmented fuel can relocate into the balloon region and potentially disperse through the burst opening into the reactor’s primary system. This observation has led to implementation of several independent test programs designed to focus on various aspects of fuel fragmentation, relocation, and dispersal. The purpose of this review is to perform a critical, holistic assessment of fuel fragmentation, relocation, and dispersal under loss-of-coolant conditions to identify data gaps in the experimental data base. Phenomena have been identified and well defined through the various testing programs, and general agreement regarding the governing parameters (temperature, burnup, heating rate, cladding deformation, etc.) has been established. However, there is a significant data gap connecting research to commercial application. Furthermore, previous research attempted to evaluate the problem holistically, but has yet to provide a comprehensive understanding of the problem. Major identified data gaps consist of (1) a comprehensive understanding of pretransient fuel rod conditions (fuel temperature, fuel stress, rod internal pressures, microstructure, etc.), (2) definition of prototypic loss-of-coolant accident conditions (heating rate, fuel temperatures, fuel stress), (3) identification of the differences between nuclear and electrical integral loss-of-coolant accident tests, and connection of fuel rod performance (cladding ballooning, burst opening, potential relocation, fragmentation susceptibility, etc.) to fuel fragmentation, relocation, and dispersal severity. The content of this manuscript provides a clear path for connecting testing and data acquisition to commercial application by providing concrete means for filling data gaps and prioritized testing regimes.
Read full abstract