Plasma activated water (PAW) is a source of various chemical species useful for plant growth, development, and stress response. In the present study, PAW was generated by a transient spark discharge (TS) operated in ambient air and used on maize corns and seedlings in the 3 day paper rolls cultivation followed by 10 day hydroponics cultivation. For 3 day cultivation, two pre-treatments were established, “priming PAW” and “rolls PAW”, with corns imbibed for 6 h in the PAW and then watered daily by fresh water and PAW, respectively. The roots and the shoot were then analyzed for guaiacol peroxidase (G-POX, POX) activity, root tissues for their lignification, and root cell walls for in situ POX activity. To evaluate the potential of PAW in the alleviation abiotic stress, ten randomly selected seedlings were hydroponically cultivated for the following 10 days in 0.5 Hoagland nutrient solutions with and without 150 μM As. The seedlings were then analyzed for POX and catalase (CAT) activities after As treatment, their leaves for photosynthetic pigments concentration, and leaves and roots for As concentration. The PAW improved the growth of the 3 day-old seedlings in terms of the root and the shoot length, while roots revealed accelerated endodermal development. After the following 10 day cultivation, roots from PAW pre-treatment were shorter and thinner but more branched than the control roots. The PAW also enhanced the POX activity immediately after the imbibition and in the 3 day old roots. After 10 day hydroponic cultivation, antioxidant response depended on the PAW pre-treatment. CAT activity was higher in As treatments compared to the corresponding PAW treatments, while POX activity was not obvious, and its elevated activity was found only in the priming PAW treatment. The PAW pre-treatment protected chlorophylls in the following treatments combined with As, while carotenoids increased in treatments despite PAW pre-treatment. Finally, the accumulation of As in the roots was not affected by PAW pre-treatment but increased in the leaves.
Read full abstract