Almost exactly 35 years after starting to work with the human glucocorticoid receptor (hGR), it is interesting for me to re-evaluate the data and results obtained in the 1980s–1990s with the benefit of current knowledge. What was understood then and how can modern perspectives increase that understanding? The hGR’s tau1c activation domain that we delineated was an enigmatic protein domain. It was apparently devoid of secondary and tertiary protein structures but nonetheless maintained gene activation activity in the absence of other hGR domains, not only in human cells but also in yeast, which is evolutionarily very divergent from humans and which does not contain hGR or other nuclear receptors. We now know that the basic machinery of cells is much more conserved across evolution than was previously thought, so the hGR’s tau1c domain was able to utilise transcription machinery components that were conserved between humans and yeast. Further, we can now see that structure–function aspects of the tau1c domain conform to a general mechanistic framework, such as the acidic exposure model, that has been proposed for many activation domains. As for many transcription factor activation domains, it is now clear that tau1c activity requires regions of transient secondary structure. We now know that there is a tendency for positive Darwinian selection to target intrinsically disordered protein domains. It will be interesting to study the distribution and nature of the many single nucleotide variants of the hGR in this respect.
Read full abstract