Inductive pulsed plasma thrust generates thrust by ionizing and accelerating plasma through pulsed inductive electromagnetic field. The spatial distribution of the magnetic field within the discharge region influences both the Lorentz force exerted on plasma and the electromagnetic coupling between plasma and circuit. An experimental prototype of inductive pulsed plasma thruster with high repeatability and a three-dimensional transient magnetic field measurement system with low integration error are established. Time-dependent spatial distribution of the magnetic field in the plasma is obtained by scanning measurement employing repeated pulse discharges. Combined with the results of high-speed photographing and electrical parameter measurements, the relationship between the evolution of plasma structure and the magnetic field penetration is discussed.
Read full abstract