Cluster-based spin crossover (SCO) frameworks are a new class of smart metal-organic frameworks (MOFs) with diverse structures and topologies and unique bistable physicochemical properties. Here, we report a cluster-based SCO framework [Fe3{Ag4(CN)6(H2O)}2(TPBA)3](ClO4)2 ⋅ 7DMF (1) with an extremely rare 3,4,6-T108 topology, in which the tripodal [Ag{Ag(CN)2}3(H2O)]2- clusters axially link the Fe2+ ions to form 2D→3D n-fold Borromean entangled networks. Under the guidance of reticular chemistry, the post-synthetic modification (PSM) from 1 with 3,4,6-T108 topology to [Fe3{Ag8X8(CN)6}(TPBA)3] (2_X, X=Cl, Br, I) with urk topology is firstly achieved via single-crystal to single-crystal (SCSC) transformation. Moreover, the successive SCSC transformations from 2_Cl to 2_Br and then to 2_I are realized for the first time. Their SCO behaviors are also modified by halogen-driven stepwise cluster transformations. Hence, these findings provide new strategies for the development of cluster-based SCO MOFs towards the smart functional porous materials.
Read full abstract