Cancer-associated myofibroblasts (mCAFs) represent a significant component of the tumor microenvironment due to their contributions to extracellular matrix (ECM) remodeling. The pro-tumor mechanisms of extracellular vesicles (EVs) by regulating mCAFs and related collagens remain poorly understood in oral squamous cell carcinoma (OSCC). In this study, through analysis of single-cell sequencing data and immunofluorescence staining, we confirmed the increased presence of mCAFs and enrichment of specific collagen types in OSCC tissues. Furthermore, we demonstrated that OSCC-derived EVs promote the transformation of fibroblasts into mCAFs, leading to tumor invasion. Proteomic analysis identified the presence of TGF-β1 in EVs and revealed its role in inducing mCAFs via the TGF-β1/Smad3 signaling pathway. Experiments in vivo confirmed that EVs, particularly those carrying TGF-β1, trigger COL18high COL5high matrix deposition, thereby forming the pro-tumor ECM in OSCC. In summary, our investigation unveils the significant involvement of OSCC-derived EVs in orchestrating the differentiation of fibroblasts into mCAFs and modulating specific collagen types within the ECM. Therefore, this study provides a theoretical basis for targeting the EV-mediated TGF-β1 signaling pathway as a potential therapeutic strategy for OSCC.