The electrical properties of ohmic contacts are classically investigated by using the transfer length method (TLM). In the literature, the TLM patterns are fabricated onto different substrate configurations, especially directly onto the 4H-SiC wafers. But, due to the high doping level of commercial substrates, the current is not confined close to the contact and, in this case, the specific contact resistance (SCR) value is overestimated. In this article, we propose, by the means of simulations, to investigate the influence of the layer under the contact towards the estimation of the SCR. The simulation results highlight that, for an accurate determination of the SCR values, an isolation layer between the contact and the silicon carbide substrate is mandatory. Thus, we have determined the characteristics (doping level and thickness) of a suitable isolation layer compatible with SCR values ranging from 10−3 to 10−6 Ω·cm2.
Read full abstract