The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .
Read full abstract