ObjectivePhotoacoustic imaging (PAI) is a promising transcranial imaging technique. However, the distortion of photoacoustic signals induced by the skull significantly influences its imaging quality. We aimed to use deep learning for removing artifacts in PAI. MethodsIn this study, we propose a polarized self-attention dense U-Net, termed PSAD-UNet, to correct the distortion and accurately recover imaged objects beneath bone plates. To evaluate the performance of the proposed method, a series of experiments was performed using a custom-built PAI system. ResultsThe experimental results showed that the proposed PSAD-UNet method could effectively implement transcranial PAI through a one- or two-layer bone plate. Compared with the conventional delay-and-sum and classical U-Net methods, PSAD-UNet can diminish the influence of bone plates and provide high-quality PAI results in terms of structural similarity and peak signal-to-noise ratio. The 3-D experimental results further confirm the feasibility of PSAD-UNet in 3-D transcranial imaging. ConclusionPSAD-UNet paves the way for implementing transcranial PAI with high imaging accuracy, which reveals broad application prospects in preclinical and clinical fields.